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Static and dynamic properties of the backbone network for the irreversible
kinetic gelation model

Dae Yeun Ki, Kyung Yoon Woo, and Sang Bub Lee*
Department of Physics, Kyungpook National University, Taegu 702-701, Korea

~Received 23 December 1999!

We study by Monte Carlo simulations the fractal nature of the backbone network for the irreversible kinetic
gelation model in both two and three dimensions. The fractal dimension of the backbone network generated at
the gel point is measured by various methods, and results are found to be consistent with that of the standard
percolation backbone. Our observation is different from the previous work in three dimensions, where a
distinctly larger value was observed. We also measure the spectral dimensionds

B and the fractal dimensiondw
B

of random walks on a backbone, defined by, respectively, the probability of random walks returning to the
starting point and the rms displacements aftert time steps. Results are also found to be consistent with the
corresponding percolation values. We therefore conclude that the backbone network of the kinetic gelation
model exhibits the same static and dynamic properties as those of the standard percolation backbone.

PACS number~s!: 05.70.Fh, 05.20.2y, 64.60.Ak, 64.60.Fr
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I. INTRODUCTION

Kinetic gelation is the irreversible growth model design
to investigate formation of an infinite macromolecule. T
initial study of the sol-gel transition was carried out by Flo
and Stockmayer@1,2# using a simple model, later known a
percolation on a Bethe lattice. A more realistic model of
additive copolymerization by radicals has been developed
Manneville and de Seze@3#. In such a model, all lattice site
are assumed to be initially in a sol phase, which consist
small monomers of multiple functionalities. The gelation
initiated by radicals which saturate, opening up a dou
bond of a monomer and leaving one bond of the monom
unsaturated. The unsaturated bond acts as a new ra
which, in turn, opens up another double bond of the nei
boring monomer. As this process continues, an infinite m
romolecule occurs suddenly at a certain fraction of the po
merized sites, known as the gel-pointpc . A typical example
of such a gelation phenomenon can be viewed from the
mation of the macromolecule by acrylamide initiated by a
moniumsulfate, as described in Ref.@4#.

The universality of the kinetic gelation model has be
intensively studied, particularly in three dimensions~3D!, by
Herrmannet al. @4,5#. They found that the critical exponen
g and n, which characterize, respectively, the percolati
susceptibility and the correlation length, are roughly t
same as the corresponding lattice percolation values. H
ever, the amplitude ratioR of percolation susceptibilities be
low and abovepc , which is supposed to be universal@6#, has
been found to be considerably smaller than that of the p
colation value. Based on this observation, they claimed
the kinetic gelation model belongs to a different universa
class from that of the lattice percolation. In 2D, on the oth
hand, both the exponentsg andn and the amplitude ratioR
were found to be considerably different from the percolat
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counterparts @7#, again suggesting different universalit
classes. The fractal dimension of an infinite network w
also determined considerably larger than that of the perc
tion network@8#, though it was later found by a more elab
rate technique to be similar to the percolation value@9#.

Considering these works, it appeared that, while the c
cal exponents of the gelation model were similar to those
the percolation counterparts, the amplitude ratioR was still
different. Similar results were also reported for other per
lation models such as the off-lattice, randomly bonded p
colation and the continuum percolation models@10–12#.

Recently, Lee and his collaborators@13–16# intensively
studied the amplitude ratio of percolation susceptibilities
various off-lattice percolation models and the kinetic ge
tion model. They found that the nonuniversal behaviors
the amplitude ratio reported earlier for various models h
been caused artificially by different sampling techniques
the percolation susceptibilities in the Monte Carlo procedu
After minimizing the errors, the amplitude ratio of percol
tion susceptibilities for various models was found to be co
sistent with the known lattice percolation value, implying
strong universality between lattice percolation and ot
aforementioned models.

However, it is still unclear whether or not the static a
dynamic properties of thebackbonenetwork for the kinetic
gelation model are also similar to those of the percolat
backbone. The fractal dimension of such a backbone wa
fact reported to be distinctly larger than that of the perco
tion backbone@17#. Since the fractal dimensiondF of an
infinite percolation network at criticality is related to th
critical exponentsn andb, characterizing, respectively, th
correlation length and the order parameter, via

dF5d2b/n, ~1!

d being the spatial dimensionality, obtaining different frac
dimensions implies that two models belong to different u
versality classes. A similar argument is valid for the bac
bone network as well, with the exponents characteriz
those quantities of the backbone. The backbone is an infi
ic
821 ©2000 The American Physical Society
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network obtained by eliminating all dangling loops and de
ends which do not carry current when the electric potentia
applied between two opposite edges or faces. The backb
at pc is known to exhibit a self-similar structure with it
fractal dimension different from that of the infinite netwo
and plays a crucial role in determining the dynamical pro
erties such as the electrical conductivity, permeability, a
elastic properties. It is, thus, interesting to study the frac
nature of the backbone network at criticality for the kine
gelation model.

In this work, we study the fractal nature of the backbo
network of an infinite cluster generated at the gel point
the kinetic gelation model. We measure the fractal dimens
dF

B from the mass distributions of monomers and from
fraction of monomers on the backbone. We also estimate
two indices regarding the random walks on a backbone,
spectral dimensionds

B , and the fractal dimensiondw
B charac-

terizing, respectively, the probability of returning to the sta
ing point and the rms displacements. With these estima
the fractal dimension of the backbone is also calculated u
the Alexander-Orbach scaling relation@18#.

II. MONTE CARLO PROCEDURE

The Monte Carlo method of obtaining realizations for t
kinetic gelation model is basically the same as that descr
in Ref. @16#. At the beginning of each simulation step, a
lattice sites on a system of a sideL are assumed to be in th
sol phase, no solvent molecule being assumed to exist,
the fractions of the tetrafunctional unitsct and the bifunc-
tional units cb . The initiators of concentrationcI are ran-
domly distributed in a given system, assuming that each
tiator acts as an active center for polymerization. Then,
of those active centers and its neighboring bond are sele
randomly. If the new site connected by that bond is not
saturated, i.e., has fewer than 2d incident bonds, the bond i
completed and the active center is moved to a new site. If
bond cannot be completed by the neighboring sites be
saturated with 2d bonds, a new attempt is made with diffe
ent active center.

Once the realization is obtained at the gel point, we sea
for an ‘‘incipient’’ infinite cluster which spans the cell alon
all coordinate directions, using the cluster labeling algorit
@19#. If such a cluster does not exist, we discard the curr
realization and attempt a new realization. If such an infin
cluster is found, we set all sites other than the sites on
infinite cluster to be zero. The backbone is then extrac
using the Roux-Hansen algorithm@20# for two dimensions
~2D! and the so-called ‘‘burning’’ algorithm@21# for 3D.
The Roux-Hansen algorithm is much simpler and more e
cient than the burning algorithm, but it can only be appli
for a 2D model because of the spatial characteristics
sample realization generated on a 50350 square lattice is
shown in Fig. 1.

Once the desired backbone is extracted, we calculate
monomer distributions on the backbone against the dista
from the randomly selected points and also the fraction
monomers on it, i.e., the gel fraction. We also generate r
dom walks from the randomly selected starting points on
backbone and calculate the number of events in which
dom walks return to the starting points and the rms displa
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ments aftert time steps. These quantities enable us to e
mate the spectral dimensionds

B and the fractal dimensiondw
B

of random walks on a backbone.

III. RESULTS AND DISCUSSION

We carry out simulations for the kinetic gelation onLd

lattice sites for various values ofL and for selected values o
cI andct for which the gel points were reported. The resu
are averaged over at least 100 realizations.

A. Fractal dimension from the mass distribution

We calculate the number of monomers on a backb
inside the circle~sphere for 3D! of radiusr, centered at the
randomly selected point. Assuming that each monomer h
mass of unity, the mass of monomers on a backbone in
the circle~sphere! of radiusr is expected to increase as

M ~r !;r dF
B

~2!

for r @a, where a is the lattice constant. Whenever ea
center of the circle~sphere! is selected, we reconstruct th

FIG. 1. Computer-generated sample realization of~a! an infinite
network and~b! a backbone network extracted from~a! for the
kinetic gelation model on a 50350 square lattice.
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PRE 62 823STATIC AND DYNAMIC PROPERTIES OF THE . . .
backbone realization by translating the center of the cir
~sphere! to the center of the system by periodic bounda
conditions. We then redetermine the connectivity and co
the number of occupied sites inside the circle~sphere! by
varying the radiusr from r 5a up to r 5La/2. In this final
stage, we employ the two different boundary conditions,
free and the periodic boundaries. In general, the perio
boundaries yield an estimate of the fractal dimension sligh
larger than what the free boundaries would yield.

Plotted in Fig. 2 are the data for the 2D kinetic gelati
model generated on a 100131001 square lattice forcI
50.05 ~circles! and 0.2~squares!, assuming that all sites ar
occupied with monomers of the tetrafunctional units, i.e.,ct
51. The upper sets are those obtained using the peri
boundaries and the lower sets using the free boundaries.
upper data are shifted by an amount 1.0 to avoid overcro
ing of the data. As shown in the figure, the data for tw
different values ofcI are not appreciably different, indicatin
that the fractal dimension of the backbone network is in
pendent of the concentration of initiators. The estimates
the fractal dimension from the plot aredF,p

B 51.6560.01 for
periodic boundaries anddF, f

B 51.6060.01 for free bound-
aries. It is generally known that the periodic boundaries yi
a fractal dimension that is slightly overestimated, while t
free boundaries yield an underestimation of the fractal
mension. Thus, the true value of the fractal dimension
expected to lie between the two estimates. It should be n
that the known fractal dimension of the backbone netw
for ordinary lattice percolation,dF

B51.64760.004 @22,23#,
lies between the two values.

Plotted in Fig. 3 on a double logarithmic scale are the d
in 3D for L5181 andcI50.0003 withct51.0. Again the
upper sets are from the periodic boundary condition and

FIG. 2. Plots ofM (r ) againstr on a double logarithmic scale fo
the backbone network of the kinetic gelation model forcI50.05
~circles! and 0.2~squares! in 2D, obtained using the two differen
boundary conditions. The upper set is the data for periodic bou
aries and the lower set for free boundaries. Note that the data
periodic boundaries were multiplied by a factor of 10 to avoid ov
crowding of the symbols.
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shifted by an amount 1.0, and the lower sets are from the
boundary condition. The linear regression fits yield estima
of the fractal dimensiondF,p

B 51.85960.011 for periodic
boundaries anddF, f

B 51.85760.010 for free boundaries
These values are again close to the known lattice percola
value in 3DdF

B51.85560.015@24#.

B. Fractal dimension from the gel fraction

Since the estimates of the fractal dimension from the m
distribution of the monomers on a backbone depend on
boundary conditions employed, it is still less clear wheth
or not the fractal dimension of the backbone network of
kinetic gelation model is the same as that of the ordin
lattice percolation value. In order to derive a more conc
sive answer, we also measure the fraction of the monom
on the backbone network.

The gel fractionG(p,L) of the backbone is the fraction o
the monomers on the backbone in a given system of sidL
and is related to the number of monomersM (p,L) as
G(p,L)5M (p,L)/Ld. Since the gel fraction for any finite
size system is known to satisfy the scaling relation@25#

G~p,L !;L2bB /n f ~ up2pcuL1/n!, ~3!

near the gel point, it can be written atp5pc as

G~pc ,L !}L2bB /n. ~4!

The fractal dimensiondF
B can thus be obtained from

M (pc ,L)5LdG(pc ,L)}LdF
B

as

dF
B5d2bB /n. ~5!

Therefore, the fractal dimension of the backbone network
obtained by estimatingbB /n from the gel fraction for vari-
ous sized systems.

d-
or
-

FIG. 3. As in Fig. 2 for the 3D kinetic gelation model forcI

50.0003 andct51.0, using the periodic boundaries~squares! and
the free boundaries~circles!. The data for periodic boundaries ar
multiplied by a factor of 10.
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Shown in Fig. 4 are the gel fractions, plotted on a dou
logarithmic scale against the size of systemL ranging from
30 to 1000, forcI50.2 ~circles! and cI50.05 ~squares! in
2D. The closed symbols are the data from the perio
boundaries and the open symbols from the free bounda
~Note that the upper sets are shifted by 0.3 to improve re
ability.! The solid lines are the regression fits, which yie
the estimatesbB /n50.35460.002 for cI50.2 and bB /n
50.34960.007 forcI50.05. These values are the averag
of the estimates from the two different boundary conditio
From these values, the fractal dimension of the backb
network is estimated, using Eq.~5!, as dF

B51.64660.004
and dF

B51.65160.014 for cI50.2 and 0.05, respectively
These values are consistent, within statistical errors, with
value obtained from the mass distribution using the perio
boundary condition, and they are also consistent with
fractal dimension of the backbone of the ordinary perco
tion.

Shown in Fig. 5 are the 3D data of the gel fraction f
cI50.003 ~closed circles!, in comparison with the corre
sponding data for the backbone of the ordinary lattice per
lation at percolation thresholdpc50.3117 ~open circles!,
plotted against the size of systemL ranging from 10 to 180.
The upper sets of data are obtained using the periodic bo
aries and are shifted by an amount 1.0, and the lower set
obtained using the free boundaries. We also carried
simulations forcI50.003 and found that the plots were b
sically similar to those forcI50.03 ~not shown!. The mean
estimates of the regression fits from two boundary conditi
for the kinetic gelation model yield the slopebB /n51.143
60.005 forcI50.003 and 1.14660.002 forcI50.03, which,
respectively, yield the fractal dimensiondF

B51.85760.010
and 1.85460.004. On the other hand, the corresponding

FIG. 4. Plots of the gel fraction on a backbone against the lin
size of the system for the kinetic gelation model forcI50.05~upper
data! and cI50.2 ~lower data! in 2D. The closed symbols are th
data obtained from the periodic boundaries, the open symbols f
the free boundaries, and the solid lines are the regression fits.
upper sets of data are shifted by an amount of 0.3 to improve
readability.
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timate for lattice percolation isbB /n51.14260.004, which,
accordingly, yieldsdF

B51.85860.008, which is consisten
with the known value@24# and is also consistent with th
estimates for the gelation model.

We have so far measured the fractal dimension of
backbone network for the kinetic gelation model both in 2
and 3D. The fractal dimensions were found to be indep
dent of the initiator concentration and were close to the
tice percolation values for both dimensions. This observat
assures us that the static properties of the backbone net
for the kinetic gelation model are similar to those of t
ordinary lattice percolation.

C. Random walks on a backbone network

Although we obtained a fractal dimension of the bac
bone network for the kinetic gelation model similar to that
the percolation backbone, we are still uncertain of the
namic properties of the backbone. The dynamic proper
may depend on the substrate structure in a more com
manner. As an example, an infinite network of continuu
percolation exhibits all the static properties similar to tho
of the ordinary lattice percolation; however, the conductiv
exponent in 3D was found to be different from the corr
sponding lattice percolation value@26#. It is, therefore, inter-
esting to study the dynamic properties of the backbone
work to clarify the universality of the kinetic gelation mode

In order to investigate the dynamic properties of the ba
bone, we generate random walks from the randomly sele
starting points on a backbone and calculate the probab
P(t) of returning to the starting point and the rms displac
ment ^R(t)2&1/2 after t time steps. The probabilityP(t) be-
haves asymptotically as

r

m
he
e

FIG. 5. Plots of the gel fraction on a backbone against the lin
sizeL of the system for the kinetic gelation model forcI50.003 in
3D ~closed symbols!, in comparison with the corresponding data f
the percolation backbone~open symbols!. The upper sets are th
data obtained using the periodic boundaries, the lower sets from
free boundaries, and the solid lines are the regression fits. Note
the upper sets of data are multiplied by 10.



o

t

ck

s

.
it
a
e
a

e
.
r

0

of
te
tr
t

k

one
ith
ck-
la-
le
re

ar
d the

of
er-

m

te

q.

x

x-
om

tic

the

e
fo

f

PRE 62 825STATIC AND DYNAMIC PROPERTIES OF THE . . .
P~ t !;t2ds
B/2, ~6!

ds
B being the spectral dimension of the backbone, which

also related to the density of states for the lattice vibration

frequencyv via r(v);vds
B

21, while the rms displacemen
^R(t)2&1/2 is known to exhibit the asymptotic behavior as

^R~ t !2&1/2;t1/dw
B
, ~7!

dw
B being the fractal dimension of random walks on a ba

bone network.
In order to estimate the spectral and fractal dimension

random walks, we calculate the probabilityP(t) and the
mean-square displacement^R(t)2& up to 50 000 time steps
The raw data ofP(t) obtained from the simulation exhib
strong even-odd oscillations, which are attributed to the ch
acteristic of the underlying lattice structure. In order to g
rid of such oscillations, we calculate the average of the d
in every interval ofD(ln t)50.05 and plot the result on th
geometrical average time in each interval. Shown in Fig
are such data for random walks on a backbone in 2D focI
50.05 andct51 ~lower data! and in 3D forcI50.003 and
ct50.4 ~upper data!. In both plots, data fort>100 yield a
good power-law behavior, indicating thatP(t) indeed be-
haves as in Eq.~6!.

In 2D, the linear regression fit between 100 and 50 0
time steps yielded the slopeds

B/250.62260.005. We also
calculated the same quantities for other values ofcI , cI
50.01, 0.02, 0.1, and 0.2, all withct51. All plots are basi-
cally similar to that in Fig. 6 with the regression slope
ds

B/250.62460.003, which is consistent with the estima
for cI50.05. From these estimates, we obtain the spec
dimensionds

B51.24660.010. This value is larger by abou
2% than the corresponding value on a backbone networ
the ordinary lattice percolation,ds

B51.2260.02, which is

FIG. 6. Plots ofP(t) againstt for random walks on a backbon
of the kinetic gelation model. The lower data are the 2D results
cI50.05 and the upper data the 3D results forcI50.003. The solid
lines are the regression fits, with the slope equal to2ds

B/2.
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of
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estimated from the known values ofdw
B anddF

B @27# by the
Alexander-Orbach scaling relationds

B52dF
B/dw

B @18#. How-
ever, since the difference is small and the errors overlap
onto another, we still believe that they are consistent w
each other, implying that the spectral dimension of the ba
bone of the kinetic gelation model is similar to the perco
tion backbone.~To the best of our knowledge, no reliab
data fords

B of random walks on a percolation backbone a
available as yet.!

In 3D, calculations forcI50.03 andct51.0 are also car-
ried out, in addition to that presented in Fig. 6. The line
regression fit between 100 steps and 25 000 steps yielde
slope ds

B/250.58960.002 for cI50.003 andct50.4 and
ds

B/250.59260.001 for cI50.03 andct51.0. From these
estimates, the spectral dimension is estimated to beds

B

51.18160.010. This is again consistent with the value
ds

B51.1860.01 for a backbone network of the standard p
colation model@24#.

In order to estimate the fractal dimension of rando
walks dw

B on a backbone, one should plot, as forP(t),
^R(t)2& againstt on a double logarithmic scale and estima
the asymptotic slope in thet→` limit. However, if the rms
displacement exhibits nontrivial correction terms, as in E
~7!, estimatingdw

B will not be as simple as fords
B . In order to

measure dw
B accurately, we define the effective inde

@dw,eff
B (t)#21, similar toneff(t) in Ref. @28#, which results in,

using Eq.~7!,

@dw,eff
B ~ t !#2151/dw

B1at2D1bt211•••, ~8!

whereD is the possible nonanalytic correction-to-scaling e
ponent. In order to extract the fractal dimension of rand
walks, it is natural to plot@dw,eff

B (t)#21 againstt21 and ex-
trapolate the value in thet21→0 limit.

Shown in Fig. 7 is the@dw,eff
B (t)#21 plotted againstt21,

for random walks on a backbone network of the 2D kine
gelation model, the inset being the plot of larget regions.
Plots forcI50.05, 0.1, and 0.2 appear to converge onto

r

FIG. 7. Plot of@dw,eff
B (t)#21 for random walks on a backbone o

the kinetic gelation model for selected values ofcI in 2D. The inset
is the plot of the same data for late time.



r
ha
om

t
ha
th
pl

io

al

.
D

fo
f

t
ne
-
ls

vi

om
ity
h

and
ns-
the
ry;
at of

lcu-
nd
om

y
are

for
a
e

er-

re
on
en-
, and
ck-
n is
ly
ctral

of
ms

s-
d-
on-
the
lar
els

ent
er-

e-
the

the
ible

rch

ing
ors

826 PRE 62DAE YEUN KI, KYUNG YOON WOO, AND SANG BUB LEE
same value in thet21→0 limit. On the other hand, data fo
cI50.02 and 0.01 appear to show slow convergence be
ior. This might be because the substrate fractal is less c
pact than those of the larger values ofcI , and random walks
encounter more friction than for the cases of largercI . In-
deed, the gel-points for these two cases are lower than
other cases. However, the upturns near the end of the c
clearly indicate that they converge asymptotically onto
same value on the ordinate. Simple extrapolation of the
yields 1/dw

B50.38160.010, i.e.,dw
B52.6460.01, which is

not inconsistent with the corresponding lattice percolat
valuedw

B52.6960.04 @27#.
The fractal dimension of the substrate backbone can

be obtained from the estimates ofds
B anddw

B as

dF
B5ds

Bdw
B/251.64560.010,

which is in excellent agreement with the earlier estimate
In 3D, the results are basically similar to those in 2

Data for smallercI such as those forcI50.0003 (ct51.0)
and 0.003 (ct50.4) are smaller than those for largercI , as
shown in Fig. 8. However, beyond 5000 time steps, data
both cases exhibit a sharp upturn. Considering the data
three cases, it appears that the value of@dw,eff

B (t)#21 con-
verges onto a value of 1/dw

B.0.32, which is also consisten
with that of the random walks on a percolation backbo
dw

B53.1360.03 @24#. It is thus clear that the fractal dimen
sion of random walks on a backbone network in 3D is a
similar to the corresponding percolation value.

Another possible way to confirm this is to estimatedw
B

from the Alexander-Orbach scaling relation. With the pre
ous estimates ofds

B anddF
B in 3D, one can calculatedw

B as

dw
B52dF

B/ds
B.3.14,

which is consistent with our estimate.
We also employed the Markov chain analysis of rand

walks@29# on a backbone network. The transition probabil
matrix W and its dominant eigenvalues are calculated. T

FIG. 8. As in Fig. 7 for the 3D kinetic gelation model forcI

50.03 (ct51.0), cI50.003 (ct50.4), andcI50.0003 (ct51.0).
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spectrum of the eigenvalues is related to the spectral
fractal dimensions of random walks via the Laplace tra
form. One of the advantages of such an analysis is that
detailed zigzag motion of random walks is not necessa
however, the estimate appears not to be as accurate as th
the direct Monte Carlo analysis. As a cross check, we ca
lated the eigenvalues of the transition probability matrix a
estimated the spectral and fractal dimensions of rand
walks on a backbone forcI50.2. Results were found to var
depending on the size of the system; the raw estimates
ds

B51.230 (L5250), 1.234 (L5200), 1.237 (L5150), and
1.240 (L5100), and dw

B52.693 (L5250), 2.705 (L
5200), 2.708 (L5150), and 2.712 (L5100). A similar size
dependence was recently found by Lee and Nakanish
random walks on an infinite network of 4D percolations in
hypercubic lattice@30#. Considering the size dependence, w
obtainedds

B51.2260.01 anddw
B52.6960.01, both of which

are also in agreement with those of random walks on a p
colation backbone.

IV. SUMMARY AND CONCLUSIONS

We studied by Monte Carlo simulations the fractal natu
of the backbone network for the irreversible kinetic gelati
model. The fractal dimension of the backbone network g
erated at the gel point was measured by various methods
the results were found to be consistent with that of the ba
bone of the standard percolation model. Our observatio
different from the previous work in 3D, where a distinct
larger value was observed. We also measured the spe
dimensionds

B and the fractal dimensiondw
B of random walks

on a backbone defined, respectively, by the probability
random walks returning to the starting point and by the r
displacements aftert time steps, and we obtainedds

B

51.24660.010 anddw
B52.6460.01 in 2D andds

B51.181
60.010 anddw

B53.1360.01 in 3D. These values are consi
tent, within the statistical errors listed, with the correspon
ing percolation values. From these observations, we c
clude that both the static and dynamic properties of
backbone network for the kinetic gelation model are simi
to those of the percolation backbone and the two mod
belong to the same universality class.

It is interesting that the two models generated by differ
procedures exhibit the same critical behavior. While the p
colation is thestatic equilibrium model, the gelation is the
irreversible growthmodel where bonds are formed as a r
sult of a kinetic growth process. Our results suggest that
‘‘static’’ percolation model may be adequate to describe
sol-gel transition and related phenomena of the irrevers
growth model.
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